Physical unclonable functions (PUFs) have emerged as a favorable hardware security primitive, they exploit the process variations to provide unique signatures or secret keys amidst other critical cryptographic applications. CMOS-based PUFs are the most popular type, they generate unique bit strings using process variations in semiconductor fabrication. However, most existing CMOS PUFs are found to be vulnerable to modeling attacks based on machine learning (ML) algorithms. Memristors leveraging nanotechnology fabrication processes and highly nonlinear behavior became an interesting alternative to the existing CMOS-based PUF technology, introducing cryptographic and resilient random outputs. Memristor-based PUFs are emerging due to the inherent randomness at both the memristor level due to the cycle-to-cycle (C2C) programming variation of the device and the fabrication process level such as the cross-sectional area and variations. Our study focuses on building a machine learning analysis and attack framework of tools on Cu/HfO2−x/p++Si
Leave A Comment